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Abstract:  

Cellular reprogramming, also called transdifferentiation is the process which change the fate of a 

defined cell type to another one. To reprogram a cell, researcher use a cocktail of defined 

transcription factors that induce changes in the molecular and genetic state of the cell. However they 

have to start with a big number of transcription factor and then reduce it. Using a motif based 

prediction algorithm and graph theory as well as a genetic algorithm, we constructed the gene 

regulatory network and scored factors to predict the importance of each of them in the 

reprogramming process.  

Amyotrophic Lateral Sclerosis (ALS) is a motor neuron degenerative disease poorly understood. 

Motor neuron normally form Neuro Muscular Junction with myotube, and that junction seem to be 

implicated in ALS. Here we propose a new in vitro coculture system of human embryonic stem cell 

derived motor neuron and chicken myotubes. That system allows study of the Neuro Muscular 

Junction formation and might lead to a better understanding of ALS as well as drug screen. We also 

propose an in vivo model to study the behavior of motor neuron injected in the neural tube of a 

chicken embryo.  
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Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease of early onset (30-40 years old) in 

which motor neurons (MNs) degenerate from cell autonomous and non-cell autonomous signals 

(Dimos et al., 2008) leading to progressive paralysis and patient death from respiratory failure. Even 

though some mutations have been previously described (Chiò et al., 2009; Sha, Z. Zhang, Schymick, 

Traynor, & S. Zhang, 2009; Shatunov et al., 2010) and well studied, only 10% of the ALS patients carry 

them and most cases are sporadic. One of the mutations is carried on the SOD1 gene: G93A 

(SOD1G93A) (Karumbayaram et al., 2009) and a lot of studies have focused on that particular 

mutation. Previous co-culture experiments have shown deleterious effects of SOD1G93A glia cells on 

the survival of MNs (Dimos et al., 2008)(SAXEL, 1977). The next step in understanding the effect of 

that mutation on human MNs (hMNs) was to study the neuromuscular junction (NMJ). The classic 

cell line for myotube and NMJ in vitro study is the mouse myoblast cell line C2C12 (SAXEL, 1977) but 

previous experiments with C2C12 cells did not work well, resulting in a poor NMJ formation 

especially with hMNs. However, it has been shown that the use of primary chicken myoblasts 

harvested from chicken embryos and differentiated into myotubes resulted in mouse embryonic 

stem cell (mESC) derived MNs in a good NMJ formation (unpublished result). Therefore, we chose to 

use that system to setup the co-culture. Furthermore, an in vivo motor neuron survival assay, using 

chick embryo as a chassis for the motor neuron to develop, was setup through the microinjection of 

hMN differentiated embryoid bodies (EB) into the neural tube.  

Another issue was to obtain human SOD1G93A hMNs. The use of patient specific iPS cell lines is a 

good approach, but another way to create MNs would be by transdifferentiation, also called cell 

reprogramming. Up until Yamanaka's iPS discovery (Takahashi & Yamanaka, 2006), cell 

reprogramming was considered as doable mainly by somatic cell nuclear transfer, an inefficient and 

complicated system. Since we have the ability to reprogram cells using simple retrovirus systems, a 

lot of effort has been put into it. The reprogramming process consists of turning one cell type into 

another, changing what we believe to be a fixed fate, and is called transdifferentiation. This process 

can occur naturally in a few organisms but remains rare and poorly understood. Over the past few 

years, scientists have succeeded in transdiferentiating cells in vitro using over expression of a specific 

subset of key regulatory genes. For example, Yamanaka's four factors, Oct4, Klf4, Sox2 and c-Myc, 

can reprogram a differentiated cell into a pluripotent one that is now called, an Induced Pluripotent 

Stem cell (iPS). But other trans-differentiations have been successfully performed, such as pancreatic 

cells into hepatocyte (C. N. Shen, Horb, Slack, & Tosh, 2003), fibroblast into neuron (Janghwan Kim et 

al., 2011; Vierbuchen et al., 2010) and recently into MNs (Eggan, K., unpublished result), fibroblast 

into cardiomyocyte (Efe et al., 2011), etc. All of those systems have in common the use of master key 

transcription factors (TFs). Through the expression of these factors, the cell undergoes drastic gene 

expression changes which eventually will change its fate. Even if some succeed in that process, the 

research principle consists mainly of brute forcing the cell. Indeed, the majority of those 

transdifferentiation projects start by a selection of potential TFs, usually by using microarray data, 

and then try different cocktails of genes. But this process is time consuming and expensive. In order 

to try to gain a better understanding of this process, we tried to setup a prediction algorithm. The 

idea was that through the study of the transcription network using a Gene Ontology (GO) scoring 

system, it would be possible to rank those genes for transdifferentiation. To do so, DNA TF binding 

predictions were used to construct the network. Later, microarray data were used to refine the 

prediction. And ultimately a genetic algorithm was used to predict the GO scoring system.  
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Here we show that a putative transcription network is predictable with good precision, but also that 

the use of microarray data in the network allows a refinement as well as a better understanding of 

the cell state. Finally, the use of a genetic algorithm is a good approach to find important functions 

that participate in the transdifferentiation.  

Materials and Methods:   

I. Human Motor Neuron functional assay 

a. Muscle extraction protocol 

Fertilized Chicken eggs were incubated for 12 days at 37.5⁰C. The embryo was extracted by cutting 

through the egg shelf and transferring the egg content into a 15cm petri dish filled with PBS. Then 

they were exsanguinated by cutting the umbilical cord. The pectoral muscle was then harvested, 

transferred into 10 ml of DMEM + 10% FBS + 100ug/ml Penicillin/Streptomycin (Chick Media) 

triturated with a sterile razor blade then a 10ml pipette, and finally a P1000 micropipette. The cells 

were centrifuged 15 sec at 1000 RPM and the supernatant was transferred into a clean 15ml conical 

tube. The cells were then plated onto a Poly-D-Lysine/Laminin coated tissue culture dish at a density 

of 100 000 cells/cm2. The media was changed every 3 days. 

Previously reported culture systems were described using another media: Ham's F10 medium, 10% 

Horse Serum, 5% Chicken Serum and 125mM CaCl2, 100ug/ml Penicillin/Streptomycin.  

b. Cell Culture 

All cells were cultured at 37°C and 5% CO2. 

i. Human Embryonic Stem cells: 

Human Embryonic Stem cells were cultured in two different ways:  

On Matrigel: HuES3 HB9::GFP (motor neuron reporter gene) were seeded on Matrigel (BD Bioscience) coated 

tissue culture dish and cultured in mTeSR1 (StemCell technologies). Media were replaced daily for the duration 

of hES expansion, and the cells in these conditions were passaged every 5-7 days using a solution of 1mg/ml 

Dispase (StemCell Technologies). 

On feeder cells: HuES3 HB9::GFP were cultured as described by Cowan et al. (2004). They were maintained on a 

feeder layer of inactivated mouse embryonic fibroblasts (GlobalStem) in hES media (KO-DMEM (GIBCO), 20% 

KO Serum Replacement, 10,000 units penicillin, and 1mg/ml streptomycin (GIBCO), 2 mM glutamine (GIBCO), 

100 μM nonessential amino acids (GIBCO), 55 μM beta-mercaptoethanol (GIBCO),  10 ng/ml bFGF2 (GIBCO)). 

Media were replaced daily for the duration of hES expansion, and the cells in these conditions were passaged 

every 5–7 days by 0.05% trypsin (GIBCO) gentle dissociation. 

ii. MNs directed differentiation: Human 

IPSCs and ESCs were differentiated as described previously (Boulting et al., 2011), but with the following 

modifications (Fig2a): differentiations were started from dispased colonies triturated to become ~50-cell 

aggregates of iPSCs, and from days 1–7 were cultured in the presence of RepSox (10 μM) and Dorsomorphin 

(0.2 μM, Stemgent) to neuralize the cultures. From day 5 onward, BDNF (10 ng/ml, R&D), ascorbic acid (0.4 

μg/ml, Sigma) and Retinoic Acid (RA) (Sigma) were added.  

From day 7 onward, Smoothened Agonist 1.3 (SAG) (Calbiochem) was added at 0.5 μM. EBs were dissociated, 

plated and assayed as described above on day 21.  
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iii. Primary Glial Cultures 

P1–P3 mouse pups were sacrificed by using an approved method of euthanasia. Under a dissection microscope, 

the parenchyma were isolated and the meninges were carefully stripped away with fine forceps. The tissue was 

then dissected into small pieces and transferred to a solution containing 12 ml of HBSS, 1.5 ml 

of trypsin (GIBCO), and 1% DNase (Sigma) and incubated at 37°C for 15 min, swirling the mixture periodically. 

The supernatant containing the dissociated cells was collected, and 3 ml of FBS was added to inhibit 

the trypsin. 

Cells were then centrifuged at 1000 rpm for 5 min, re-suspended in glia medium (minimum essential medium 

(MEM) with Earle's salts (GIBCO), D-(+)-Glucose 20% (Sigma), penicillin-streptomycin (GIBCO), 10% Horse 

Serum (GIBCO)) and plated at the concentration of 80,000 cells per ml in T75 flasks (Falcon). After 

the glia reached confluency, they were re-plated onto Poly-D-Lysine/Laminin coated tissue culture dish (BD 

Biosciences). 

iv. Human motor neuron culture 

Glial cells were harvested and cultured as described above, cells were then trypsinised using 0.05% trypsin and 

plated on Poly-D-Lysine laminin coated dish with glia media. 24-48h later, hMNs were seeded on top of it and 

the medium was switch to hMN media.  

For the RepSox experiment, 10µM RepSox was added to the hMN media and the treatment started as soon as 

the hMN were plated. 

c. Dissociation of neuralized EB 

EB at day 21 of neuralisation were dissociated using a 1% Papain solution with DNase. EB were 

washed with Phosphate buffered saline (PBS) twice, and then incubated for 30 min in the Papain mix. 

Cells were then gently triturated then either plated or sorted using flow cytometry. 

d. Co-culture assay 

Myoblasts were extracted as described above and plated on Laminin coated 13 mm Plasma treated 

coverslips (Nunc) at a cell density of 100 000 cells/cm2. Media was changed at day 3 and at day 6 of 

culture, neuralized hEB were plated on top of the muscle and the media was changed for hMNs 

media (Neurobasal (Invitrogen), NEAA, penicillin/streptomycin, heparin (2 μg/ml), N2 supplement 

(Invitrogen), B27 (Invitrogen), retinoic acid (RA) (1 μM, Sigma), ascorbic acid (0.4 μg/ml, Sigma), db-

cAMP (1 μM, Sigma), 10 ng/ml of each of BDNF, GDNF and CNTF (R&D), 25 μM β-mercaptoethanol 

(Millipore) and 25 μM glutamic acid (Sigma)). 75% of the media was changed every other day. 

e. Injection 

HuES3 HB9::GFP EB were neuralized as described above. Chicken embryos were incubated at 37.5⁰C 

for 50h, then hMNs were injected in the embryo as described previously(Boulland, Halasi, Kasumacic, 

& Glover, 2010), but with the following modifications: instead of removing one somite we removed 

for a length of 3 somites half of the neural tube at different locations (6-9th, 10-13th, 16-19th, 20-

23th somites). Instead of using a cell suspension we micro-injected a single intact EB into the wound. 

The eggs were then incubated for 3 more days.  

f. Immunocytochemistry. 

Cell cultures were fixed in 4% PFA for 15–30 min at 4 °C, permeabilized and quenched with 0.1–

0.2% Triton-X in PBS (wash buffer) and 100 mM glycine (Sigma) for 20 min.  
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Cells were blocked in wash with 10% Horse Serum for 30 min and then incubated with rabbit 

polyclonal Anti-GFP-alexa-488 antibody (Invitrogen, 1:400) and α-Bungarotoxin-Alexa-594 

(Invitrogen, 1:100) overnight. Images were acquired on a confocal microscope (Zeiss LSM510). 

g.  Whole mount immunocytochemistry 

A modification of (Klymkowsky & Hanken, 1991) whole-mount G. Kardon immunocytochemical 

technique was used to stain the hMNs in whole normal chicken embryo. Injected day 5 embryos 

were fixed overnight at 4°C with 4% paraformaldehyde and then bleached overnight with Dent’s 

bleach (50% methanol, 10% DMSO, 15% H2O2). Specimens were washed for 3 hours in PBS, stained 

for 72h at 4°C with a rabbit polyclonal Anti-GFP-alexa-488 antibody (1:400) (in 10% serum, 20% 

DMSO), and washed for 24 hours in PBS at 4°C. Images were acquired with an epifluorescent 

dissection microscope (Leica). 

II. Transdifferentiation prediction using gene regulatory networks and 

genetic algorithm 

a. Database: NCBI, Jaspar, Transfac Pro 

For this project, multiple databases have been used: the National Center for Biotechnology 

Information (NCBI), RefSeq database, as well as the annotation database and the Mouse genome 

upstream sequences.  For the position weighted matrix (PWM) database, the Jaspar database (Bryne 

et al., 2008; Wasserman & Sandelin, 2004) as well as the Transfac Pro database (Matys et al., 2006) 

were used. The PWM from the Transfac Pro database were converted into the MEME format and 

merged with the Jaspar database which we will refer here to as the PWM database. For the 

functional annotations, the Gene Ontology Database (Ashburner et al., 2000) was used. 

b. Binding site prediction 

The binding site prediction of a given TF was performed using the "fimo" software from the MEME 

Suite (Bailey & Elkan, 1994).A selected subset of PWMs were then ran against the 5kb upstream 

sequence of all genes in the mouse genome. The results were then refined with a p-value selection of 

<1.10-7 as well as a fimo Score selection >15. 

c. Microarray 

Microarray data were kindly given by Justin Ichida and were acquired using the Illumina technology.  

d. Transcription factor selection 

To determine whether or not a selected gene is a TF, GO IDs were used. Using the NCBI annotation 

database and a selected subset of GO IDs, a list of TFs was extracted. 

e. Recursive analysis 

In order to construct the transcriptional network of a subset of genes, a recursive fimo analysis was 

performed (using the fimo software from the MEME suite (Wasserman & Sandelin, 2004)). Starting 

with that subset, a fimo analysis was performed (M&M: Binding site prediction). Among the results, 

the TFs were extracted using the TF GO ID list and the binding site (BS) for each TF were stored.  

The new list of TFs was then reused as a new entry for the analysis. At each step the BS information 

are stored for each TF. 
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After 3 rounds of analysis, the network was constructed from the BS data following these rules: The 

network is directed, the edges are weighted, a node is a gene, an edge is a predicted binding site 

directed from the TF to the bound gene. Each edge has a weight (∈ [0; 1]) which is proportional to 

the quality of the fimo prediction following that equation:  

��	
ℎ� =
�	�������������	�	�����	��	���	�������

 (��"����	�	�����	��	���	���������������	�	�����	��	���	�������)
+

	
%&'���	��������	%&'���	��	���	�������

 (��"����	%&'���	��	���	���������������	%&'���	��	���	�������)
   

In graph theory, every node and edge can contain an unlimited amount of information. A condensed 

version network was then used where only TF were assigned as node, and each node contained as 

attributes all the predicted genes as well as all the GO IDs of those genes.  

f. Microarray data refinement 

The network previously created was then refined with microarray data. Each node was tested for its 

expression in a given system, if the gene wasn't upregulated (>20 fold) or downregulated (<-20 fold) 

then it was removed from the network.  

Moreover, using the expression data, a possible interaction between two TF was assigned following 

the chart below were TF1 binds to TF2:  

TF1 TF2 Interaction 

Upregulated Upregulated Activator 

Downregulated Downregulated Activator 

Downregulated Upregulated Repressor 

Upregulated Downregulated Repressor 

g. Genetic algorithm 

The genetic algorithm was created following the rules of (Goldberg, 1989). A gene is a GO ID score, 

the genome is all the GO IDs in the network, the mutation rate is 0.1%, with a mutation intensity of 

+/- 10%. Every individual has a lifetime of 3 generations. After those 3 generations, its chances to die 

are proportional to its fitness.  

Result 

I. Human Motor Neuron functional assay 

a. Chicken myoblast extraction and differentiation into myotube. 

In order to setup a co-culture assay, we first needed to extract a pure myoblast population and to 

differentiate them into mature, contractile, myotubes. It has previously been reported that 

harvesting the pectoralis muscle at stage 38 (day 12) of the chicken embryo followed by a muscle 

trituration leads to the extraction of a myoblast population which fuses over time into mature 

myotube (Rafuse & Landmesser, 1996). In that extraction process, cells were plated with a special 

media containing 5% of Chicken serum (CS) as well as 10% of Horse serum (HS)  

(M&M: Muscle extraction protocol). When we used that protocol, we did see some myotube 

formation, but the extraction process usually lead to an undifferentiated layer of myoblast and 

fibroblast (Fig1a).  
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We first tried to improve the extraction yield by harvesting more selectively the muscle, but we 

didn't see any improvement (Fig1b). Thus, we tried to improve the extraction yield by applying a 

selective pressure on the extracted cell population. To do so, we removed one by one all of the 

different elements of the media composition and tried to replace them with similar elements. We 

showed that replacing Ham F10 by DMEM medium, as well as HS and CS by 10% FBS, increases the 

myotube formation by over fivefold (Fig1c). We also showed, that the use of CaCl2 was unnecessary 

for the myotube formation, but increased the contraction frequency (Fig1d). To conclude, we 

demonstrated that the previously reported protocol might not be the most suitable to achieve a pure 

and fully differentiated population of myotube. 

b. Human Motor Neuron differentiation and Neuromuscular Junction 

Next, in order to perform the co-culture we needed to differentiate ES cells into hMNs. We used a 

modified version of the previously described neuralisation protocol (Boulting et al., 2011) (M&M: Cell 

Culture) (Fig2a). We started with a genetically engineered Human ES cell line carrying the reporter 

gene GFP under the control of the HB9 promoter region (HuES3 HB9::GFP). HB9 (also known as 

Mnx1) is a specific gene expressed primarily in hMNs among the spinal cord neuronal population. We 

first dissociated the EBs (M&M: Dissociation of neuralized EB), sorted high GFP expressing HB9::GFP 

cells using flow cytometry, and plated them alone or on top of a day 6 myoblast culture (Fig2b and 2c 

respectively). However, the survival without glial cells wasn't long enough for the hMNs to form a 

NMJ. Thus, we decided to plate whole EBs on the myotubes (Fig 2d) (M&M: Co-culture assay). It 

allowed us to keep the hMNs long enough for the NMJ to form. In order to see the NMJ, we used a 

labeled protein, α-Bungarotoxin coupled with Alexa-594 (α-Bung).  α-Bung is a neurotoxic protein 

first isolated in the venom of Kraits (an indian snake) which binds specifically to nicotinic and 

acetylcholine (ACh) receptor. It is well known that the α-Bung binds specifically to the ACh receptor 

of the NMJ allowing us to visualize that region (Rafuse & Landmesser, 1996). Using the double 

staining HB9::GFP and α-Bung-Alexa-594, it was possible to see the connection between hMNs and 

myotubes (M&M: Immunocytochemistry). After 17 days of culture some of the hMNs had 

successfully formed a NMJ with a chicken myotube (Fig2e, due to light diffraction of the Thermanox 

coverslips, we couldn't get a better picture). Here, we successfully co-culture hMNs with chicken 

myotube and we have been able to see the formation of NMJ between those two populations. Next, 

an electrophysiologic study of that junction will be necessary to make conclusions as to its 

functionality. 

c. TGF-β inhibition promotes motor neuron survival as well as myotube formation 

The neuralisation protocol employs  the use of a TGF-β inhibitor SB 431542 (M&M: Cell culture). We 

then tested another compound named RepSox (or E-616452) also known to be a TGF-β  inhibitor 

(Fig3a). It was first discovered as a TGF-β inhibitor (Gellibert et al., 2004) and later described as a 

chemical replacement for Sox2 during iPS reprogramming (Ichida et al., 2009). We found that the 

neuralisation using 10μM of RepSox was as efficient as with the SB 431542 (unpublished result, 

efficiency of about 30%) (Fig3b). Our hypothesis was that if TGF-β signaling inhibition participates in 

the differentiation into hMNs then it might also have an effect on the mature neuron. Our first 

hypothesis was that it would help the survival, we therefore plated the hMNs with glial cells, with or 

without 10µM RepSox (M&M: Cell culture).  

Our result showed a slight increase in the survival when the hMNs were plated alone (data not 

shown), and a stronger effect when they were cultured along with glial cell (Fig3c). 
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Moreover, TGF-β signaling has been previously described as a strong inhibitor of the myotube 

differentiation (Ge et al., 2011). We therefore tried to culture the myoblast with different 

concentrations of RepSox. We saw a clear dose response in the amount and the maturity of the 

myotube as soon as 3 days of culture and an even stronger effect after 5 days with 10μM as the best 

concentration (Fig3d). Knowing that the TGF-β inhibition will help the myotube formation and that 

the optimal concentration was the same as the one used for the hMNs, we tried to co-culture those 

cells with 10μM of RepSox. As expected we saw an increase in the survival of the hMNs but more 

interestingly we saw a strong effect on the axonal growth activity (Fig3e). Indeed, when we 

compared the EBs cultivated with RepSox against those without TGF-β inhibition we clearly saw that 

almost all the hMNs of the RepSox EB projected axons while in the control only a few hMNs 

projected axons (Fig3e). To conclude, we showed that inhibition of TGF-β among the hMN has a 

drastic effect on the axonal activity and a non-cell autonomous survival increase probably due to glial 

cells.  

d. hMN implantation in a chicken embryo 

It is clear that an in vitro protocol to study the NMJ is a really useful tool as it allows for drug screens, 

but cells don't behave in vitro as they do in vivo, this is why we decided to implant an EB into a chick 

embryo at stage HH16-18 (50h of incubation). We used HuES3 HB9::GFP neuralized EB and we 

performed the injection as described previously (Boulland et al., 2010) (M&M: Injection). We 

harvested the embryo after 3 more days of incubation and we were able to see that some EB 

attached and started to send out axons in the embryo (Fig3f). We showed that it is possible to inject 

hMNs into the neural tube of a chicken embryo at day 2 and that the cells survived at least 3 days 

and start to form axons in the embryo. An interesting follow up would be to see if the cells 

successfully formed a NMJ therefore allowing us to study it in vivo. 

II. Transdifferentiation prediction using gene regulatory networks and 

genetic algorithm 

It has been shown that by using a cocktail of 7 factors it is possible to transdifferentiate fibroblast 

into MNs (Eggan, K., unpublished result) called Induced Motor Neuron (iMNs). However, the 

underlying mechanism that allows those cells to change their fate remains largely unknown. It is 

usually the same for the actual reprogramming  studies, indeed the process which allows a cell to 

change its fate, though well studied, remains unknown. Our hypothesis was knowing that functional 

gene annotations can be mainly summarized through the Gene Ontology (GO) database, if we 

postulate that most of the genes have annotations, then it would be possible to predict the trans-

differentiation genes using a GO ID scoring system. 

At present, the methods to differentiate a cell through a set of defined factors, starts by performing a 

microarray analysis between two cell types (usually fibroblast against the desired cell type), then by 

extracting the differentially overexpressed TFs and by scanning the literature for each one to select 

around 20 candidates. After doing so, a cocktail of the 20 genes is injected, and if it works, one would 

restrict the cocktail by removing one factor at a time. That technique allows the researcher to assess 

the importance of each factor in the reprogramation, and to restrict their cocktail to a subset of 

genes. But this process is long, expensive and requires a lot of manipulations. Thus, to reduce the 

time and the number of experiments we tried to predict in silico which factors are the most 

important for the transdifferentiation of one cell type to another (Fig5a). However, the first step, 

microarray analysis, was still necessary.  
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Indeed, this step allows us to select a small number of factors which are the most probable to be 

involved as they are overexpressed (Fig4a). Starting with the list of potential factors, we needed their 

gene regulation networks to understand by which mechanism they could act in the cell 

reprogramming. Some of the most studied pathways are already available, but most of them are still 

unknown, underlying the need for a method to create such a network. 

a. Transcription factor binding motif based analysis 

TFs have the property to bind to a specific sequence of DNA, allowing the researcher to assign for 

each TF a probable DNA binding sequence (BS). There are a lot of ways to find that sequence, but 

each of them end by defining a Position Weighted Matrix (PWM) which gives the probability for each 

position of the sequence to be one of the 4 DNA nucleotides (Fig4b). Using those PWMs, it is then 

possible to predict the probability of a defined factor to bind to a DNA sequence. If that sequence 

contains a DNA motif close to the PWM, by doing a motif based research, it is possible to find 

probable binding sites for a given TF. There exist different databases of PWMs, but the most 

advanced ones are the private Transfac Pro database and the public Jaspar database. Thus, we 

decided to merge those two databases (M&M: Databases). 

Since 2002, the mouse genome has been fully available (Waterston et al., 2002), but computing a 

motif based analysis on the 2.5Gbases of this genome requires a large number of computing 

resources. Also, even with the ability to predict the BS, we still need to correlate those BS with a 

putative regulated gene. Therefore, instead of using the whole genome we decided to use a subset 

of it. First to correlate a sequence with a gene, it is necessary to know its position, but thanks to the 

RefSeq database, each gene has an assigned position on the genome. Using the RefSeq database and 

the mouse genome, it is then possible to extract the 5 Kilobase (Kb) upstream sequence for every 

gene in the genome. Such databases already exist and are available for example on the Harvard 

website (“Mouse genome upstream sequences,” n d). We decided to use 5Kb because of the 

complexity of the gene regulation among eukaryotes. Indeed, gene regulation can act far from the 

transcription starting site pinpointing the necessity for such a big upstream sequence.  

To perform a motif based analysis of PWMs on a DNA sequence two main tools are available, the 

"Match algorithm" from Transfac (Matys et al., 2006) and the "fimo algorithm" from the MEME suite 

(Wasserman & Sandelin, 2004). We decided to use the fimo tool to perform our analysis. 

b. Network construction 

In order to construct a gene regulatory network we had to choose between constructing it for each 

TF in our subset or constructing the combined network of all the TFs together. Knowing the 

complexity of the gene regulation in eukaryotic organisms, analyzing each factor at a time would 

have introduced a bias, indeed those factors usually interact between each other with regulatory 

cycles, switches, etc. But computing all the factors together also increases the level of complexity of 

the network increasing the intrinsic connectivity. Nevertheless, to construct the network we used a 

recursive fimo analysis starting with all the TFs that we selected from the microarray (Fig5b) (M&M: 

Binding site prediction). We extracted all the probable BS for each of those factors, and then 

extracted the TFs from those putative regulated genes.  

To extract the TFs, we use an annotation selection using GO IDs (M&M: Transcription factor 

selection).  
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We then used those TFs as our starting pool of factors and restarted the algorithm (M&M: Recursive 

analysis). Because the significance of  each prediction decreases at each iteration, we arbitrarily 

decided to stop after 3 iterations. 

Next, we needed a tool to analyze those interactions. Because of the power and the flexibility of  

graph theory, we decided to model our interactions using a graph (Fig5c). We defined a node as a 

gene, and an edge as an interaction. The flexibility of Graph theory allowed us to assign attributes to 

each node or edge. We then assign to each node their differential expression from the microarray as 

well as their GO IDs. To each edge were assigned the p-value and the fimo score as well as a weight. 

We defined the weight of each edge as a relative weight in the network (M&M: recursive analysis). 

Because of our interest in understanding the iMNs regulation network, we first created it using our 

algorithm (Fig4c). We needed a rough confirmation that our prediction was good, thus we decided to 

use the microarray data as a validation. Indeed our network was supposed to be the core network of 

MNs in order to reprogram them so every gene in our network should be either upregulated or 

downregulated. Defining an upregulation as a 20 fold increase and a downregulation as a 20 fold 

decrease in expression versus the fibroblast we showed that 89% of the genes in our network were 

affected in the cell, therefore validating our model.  

c. Refining the prediction using Microarray data 

Our predictions were good but in order to refine them, we first started with a 2-dimensional 

selection on the p-value and the fimo score (Fig4d). We defined the false positive as a gene which is 

not differentially expressed and false negative as the non-prediction of a differentially expressed 

gene. We constructed the network using a selection of a p-value inferior at 10-5 and a fimo score 

superior at 10, and we then removed each node by decreasing the p-value and increasing the fimo 

score. At each step we tested the percentage of false positive and false negative, and we found that 

the best prediction score was a p-value of 2.10-7 and a fimo score of 18 (Fig4d). As we couldn't 

achieve a perfect removal of false positive without affecting the false negative using this approach, 

we also refined it by removing the genes which are not differentially expressed as they probably 

don't participate in the transdifferentiation process (Fig5c) (M&M: Using the Microarray data). 

Combining those two approaches we achieve an excellent quality of prediction. 

d. Scoring the factors 

Now that we had our gene regulation network, to predict the importance of each factor we needed 

to score each factor according to their importance in the transdifferentiation process. The major 

issue was that this process is poorly understood, and it is difficult to assess the functionality of each 

gene from a gene regulation network because of its intrinsic complexity. To solve this problem we 

decided to implement two methods, the first one is directly inspired from the classical 

transdifferentiation experiment and consists in removing one factor at a time and measuring the 

disturbance in the network. The second way consists of scoring each TF using their GO IDs and the 

GO IDs of the gene they activate (Fig5e). Indeed, each method taken separately would give a result 

which is biased by multiple factors, like the quality of the prediction or the number of genes in a 

subnetwork, while using both simultaneously will reduce those.  

To measure the disturbance induced by the removal of one factor at a time, we first created the 

subnetwork for each factor, then we removed that subnetwork from the main network simulating 

the removal of one factor.  
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To assess the disturbance induced by the removal of that subnetwork, we compared the number of 

nodes, the number of cycles, the number of self-loops, as well as the total GO ID score of the 

remaining network. Those numbers were then normalized to give a score between 0 and 1.  

To measure the score of each factor, we made two hypothesis, first that each jump from one node to 

another decreases the importance of the next node, and secondly that each node can be scored 

according to its GO IDs, which represent its cellular functions, enzymatic reactions, and cellular 

compartment. The first issue was that one node is connected to a set of other nodes, some of those 

nodes are also connected to other nodes, and if you have a cycle, then you can't score any node of 

the cycle as they depend on the other nodes. Thus, we decided to use another scoring method, using  

Dijkstra's algorithm (Dijkstra, 1959) we determined the shortest path from each starting node to all 

the other reachable nodes in the network reducing the network to a Tree (Fig5e: GO ID scoring 

method). Then we scored each target node by taking its own score, and by multiplying it by its 

weighted coefficient. The coefficient was calculated by taking the weight of all the edges between 

the first node and the targeted node and by multiplying them between each other. Because the 

weight is inferior or equal to 1, at each jump the coefficient was decreased, thus reducing the 

importance of each gene with its distance and the quality of its prediction.  

e. Use of a genetic algorithm to create a scoring table 

Now that we had everything ready to score the network, we needed a scoring table which assigns for 

each GO ID a score. Because the transdifferentiation mechanism is poorly defined, we couldn't build 

it by hand. Moreover, if we did, we would introduce a human bias. Thus we decided to use a genetic 

algorithm to setup a GO ID score table. But we needed at least two different networks from two 

different experiments, otherwise the selection process would have selected a certain number of GO 

IDs which are not transdifferentiation specific but cell-type and experiment specific. Thus, we 

decided to use the iPS Network as an external network, because it is well defined and studied. We 

defined a "gene" as a GO ID score and an individual as the set of all genes (an individual = a scoring 

table which assigns a score for each GO ID), and extracted all the GO IDs from both networks to 

create the first individual. We decided to use a classic genetic algorithm method (Goldberg, 1989) 

(Fig5d) consisting of multiple steps: An initialization which generates a population by randomization 

of the score for each gene and an attribution of a fitness, then a mating between two individuals 

selected according to their fitness (the higher the fitness the higher the probability of mating). The 

mating consists of random crossovers between the two parents which generate two children.  Those 

two are then mutated, and, by a selection process (Fig5e) assigned a fitness.  

The critical part of a genetic algorithm is the selection process. We decided to use our knowledge of 

the iMNs and iPS transdifferentiation as a goal to reach for the individuals. We constructed their 

networks starting with 20 selected factors, and we assigned a score to each factor, 1 if the factor was 

necessary, and 0 if it was unnecessary based on experimental data. Then, we calculated for each 

individual their disturbance score, as well as their GO ID score. Each score was then normalized for 

each individual, by taking the maximum and minimum score of the set of factors and to normalize 

each factor with those.  

We then did the mean of the disturbance score and the GO ID score, and we defined the fitness as 

the correlation coefficient between the individual score and the known score (Fig5e).  
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By running the selection process on both the iPS and iMNs network and by doing the mean of the 

two fitness, we hypothesized that it would reduce the non-transdifferentiation noise. Moreover, 

every time that a transdifferentiation set of gene is discovered it is possible to add it to the algorithm 

and each added network should reduce the non specific noise.  

Sadly because of a lack of time we could not run the algorithm long enough to select the GO IDs, and 

so we couldn't achieve a GO ID score table. Indeed, we managed to increase the speed of the 

selection by reducing to a minimum the number of calculations at each step but the time for the 

selection of each individual was still 0.2 +/- 0.17 making it hard to compute over a big number of 

generations. However, we gained confidence that this method could work, allowing researchers to 

reduce the number of factors they have to test, as well as revealing some mysteries of the 

transdifferentiation process.  

Discussion 

I. Human Motor Neuron functional assay 

In order to culture chicken myotube we started by improving upon the extraction protocol (Rafuse & 

Landmesser, 1996). To do so we tried to apply a selective pressure which will only select the muscle 

cells. By reducing the total serum percentage from 15% to 10% as well as using DMEM and FBS 

instead of Ham's F10 and HS/CS, we've been able to selectively grow only the myoblast population. 

We also showed that the use of calcium was not necessary but helped the maturation of the 

myotube. Indeed to contract myotubes need to store Calcium ions in their endoplasmic reticulum, 

increasing the contraction activity. Reducing the serum percentage and using DMEM, reduces 

drastically the amount of fibroblast in our culture and avoided an overgrowth of that population, 

allowing the myoblast to fuse into myotube. Indeed it is known that overgrowth of fibroblast is one 

of the major issues in myoblast extraction (Pacak & Cowan, 2009). So our protocol did not directly 

improve the growth of the myoblast, but instead reduced the fibroblast growth. Indeed, using our 

protocol, we saw the first mature myotubes after 6 days of culture, while with the old protocol the 

first mature myotubes appear after 3 days of culture. But, because we wanted the purest population 

of myotubes in order to co-culture them with the MNs we decided that this protocol was the best 

one in our particular case. Also, our protocol is more reliable as it always gives rise to a good 

myotube population while the other one depends mainly on the quality of the dissection. 

Using this myotube population, we successfully plated and cultured differentiated hMNs on top of it. 

We first had to find a way to culture those cells without glia as the survival wasn't long enough. We 

had two options, try to co-culture 3 types of cells, or using the non specific differentiation of the EB 

as a potential source of glial cell. The first solution didn't seem a good idea because the more cell 

types you try to co-culture, the more issues you can encounter. Thus, we plated whole EBs containing 

hMNs as well as a lot of other cell types on top of our muscle. It was our hypothesis that by doing so, 

other cells in the EB will help the survival of the neuron, and that's indeed what we saw.  

Our main question was to know if the hMNs were able to bind to the chick myotube, we then 

assessed that question using a double staining, GFP, and α-Bungarotoxin-Alexa-594, allowing us to 

see the NMJ, as well as the axon. We've been able to see that some hMNs successfully bound to the 

myotube.  
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The main goal of this co-culture experiment was to use it to assess if there is any difference between 

ALS patient derived MNs versus wild type MNs. But we've been unable to differentiate patient 

specific MNs from the iPS cell line at this time.  

However, we showed that the inhibition of the TGF-β pathway had a drastic effect on the MNs. 

Indeed, the use of a TGF-β inhibitor in the differentiation protocol made us think that inhibiting this 

pathway might have an effect on the MNs. We showed that the inhibition of TGF-β induced a slight 

increase (3-fold) in the survival of the MNs but mainly increased the axonal activity. Interestingly, the 

increase in the survival was only seen when the MNs were cultured with glial cells which lead us to 

think that the survival is a non cell autonomous effect, probably glia dependent. Interestingly we also 

saw that the increase in axonal activity wasn't glia dependent, and thus probably a cell autonomous 

effect.  

As it is well known that TGF-β inhibition increase the myoblast differentiation into myotube, we 

tested RepSox with different concentrations on our myoblast. We indeed saw a big increase in 

myoblast fusion as well as in the contractile activity. Because RepSox was able to increase the 

survival of hMNs, we decided to test its effect on the NMJ. The main issue that we had was that 

inhibiting TGF-β will have an effect not only on the MNs but also on the muscle cell, making it difficult 

to assess if the observed effect was due to the myotube or the MNs. A better experiment would be 

to culture the muscle and the MNs in two separated chambers with an axon permeable membrane 

between the two chambers. As the axon would be able to go from one chamber to another, small 

molecules like RepSox would probably also be able to cross, but we believe that it would at least 

reduce its effect on the other cell type. Next, it would be interesting to better study the effect of 

RepSox on the hMNs as this could lead to a possible cure for ALS patients.  

Finally, we successfully injected hMNs in the neural tube of a day 2 (Stage HH16-18) chicken embryo 

and we've been able to see some axon formation. This experiment is really interesting as it offers an 

in vivo model to study hMNs. Indeed, in-ovo experiments on chicken embryos (HH xxxx stage) are 

more simple than similar experiments on murine embryos at a similar stage of development (E9.5-

E10.5) which would involve in-utero surgery. Chicken are in that case an easier model and we show 

here that it allows for the survival of hMNs as well as axonal activity.  

II. Transdifferentiation prediction algorithm 

Here we explored a new approach to understand the mechanism of transdifferentiation and a new 

way to try to predict the importance of each factor during the transdifferentiation process. To build 

the gene regulatory network, we decided to use a prediction method using PWMs and the mouse 

genome, as well as a motif based research. Such an approach allowed us to predict a fairly good 

regulatory network. The choice to start with all the factors appears to be a better choice as it allowed 

us to study some of the interaction between genes. For example the number of cycles is increased in 

the main network versus the sum of the small networks. Moreover, use of Graph theory to construct 

the network appears to be the best choice as it allowed us to easily study it.  

Indeed, not only have we been able to use some of the properties for our prediction, but graphs 

allows us to go further into the study of regulatory networks and transdifferentiation. 

Nevertheless, we also showed that even if a motif based prediction was already a good prediction, 

the use of microarray data was necessary to better refine the network.  
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Indeed, without refinement, the network predicted 89% of the differentially expressed genes, while 

with a microarray refinement we've been able to achieve 94.6%. We've been unable to achieve 100% 

as the microarray data didn't contain the expression level of every gene and some measurements 

were statistically non significant (p-value > 0.01).   

However, our approach missed an epigenetic analysis as the transdifferentiation process occurs not 

only with protein-DNA interaction but also with a lot of changes in the methylation state as well as 

changes in the histone code, leading to condensation/release of the DNA in the cell. Next we would 

like to integrate DNA methylation and epigenetic changes in the prediction. Also, in eukaryotes the 

process of regulation of genes usually doesn't involve only one gene but multiple protein interactions 

at the transcription site, as it has been demonstrated to be essential for example in the ES/iPS cell 

pluripotency network (Orkin et al., 2008). Thus, a study of interactions between elements of the 

network and patterns would allow us to better predict the expression of genes.  

Thanks to the effort of the community of scientists around the world, the Gene Ontology database 

gains information every day. It is our belief that over time the use of such annotation will be crucial 

to the understanding of biology. Indeed, the level of complexity of a cell is so high that to understand 

part of it, annotations are critical. Here we used this database to try to predict functionalities which 

are critical for the transdifferentiation process. Even if we've been unable to complete the analysis 

for the transdifferentiation process, our refined network associated with the Gene Ontology is a 

powerful tool to understand mechanisms in the cell. Indeed, it is possible to cluster genes with their 

GO IDs, extract pathways, or target more specific cell functions.  

However, in order to predict the trans-differentiation through the network we needed a scoring 

table. Our approach through a genetic algorithm seems to be the best idea. Indeed, we could select 

by hand a subset of GO IDs that match our current view of the transdifferentiation. But our 

understanding of this process is still incomplete and by putting such a bias we might have missed 

some new properties that were unexpected. Also, our current knowledge might be too small to 

correctly predict the important factors, underlying the importance of such an unbiased approach.  

Finally, because we tried to remain as flexible as possible, our approach allows the use of new 

transdifferentiation networks to increase its accuracy. Indeed, our genetic algorithm is capable of 

computing the scoring table against a lot of networks. However the downside of such an approach is 

that each other network will increase the calculation time. But computers are more powerful every 

day and such computation shouldn't be an issue.  
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